
StereoMQL	
API	Reference	2.00		

(V	2044)	

	

	 2	

	

Contents	
1.	API	for	Developers	2.0	 4	

1.1	 The	Estimator	 4	
1.2	 Easy	coding	 5	
1.3	 Architecture	of	SEAs	 5	
1.4	Steps	to	build	 6	
1.5	Event-Processing	 7	

2.	Processing	logic	 11	
2.1	Orientation	 11	
2.2	StereoTrader	host	data	 13	

3.	Accessing	bars	 15	
3.1	The	_Bars	object	 15	

3.1.1	Basic	data	 15	
3.1.2	Shapes	and	measuring	 16	
3.1.3	Bar	interaction	and	pattern	 16	
3.1.4	Advanced	 17	
3.1.5	Indications	 17	

3.2	Single	bars	 18	
3.2.1	Predefined	single	bar	objects	 18	
3.2.2	Data	of	the	current	bar	 19	
3.2.3	Basic	data	of	single	CBar	objects	 20	
3.2.4	Member	functions	for	shapes	and	measuring	 21	
3.1.5	Bar	interaction	 22	

4.	Signals	 23	
4.1	Setup	functions	 23	
4.2	Basic	commands	 25	

4.1.1	Open/close	positions	 25	
4.1.2	Blocking	/	Unblocking	 26	

4.2	Pending	orders	 26	
4.2.1	Order	settings	 27	
4.2.2	Order	modification	 28	

4.3	Managing	trades	 28	
4.3.1		Stereo	Future	mode	 28	
4.3.2	Functions	for	Stereo	Hedge	mode	 29	
4.3.3	Commands	for	manual	exits	 31	

4.4	Commands	for	automated	exits	 33	
4.5	Commands	for	strategic	orders	 34	
4.7	Messages	 36	

	

	 3	

4.8	Other	functions	 36	
4.9	API	variables	 37	

4.9.1	Common	 37	
4.9.2	Trading	data	 38	

4.10	Status	requests	 39	
4.11	Source	code	example	 40	

5.	Drawing	 42	
5.1	Drawing	lines	 42	
5.2	Drawing	rectangles	 42	
5.3	Drawing	clusters	 43	
5.4	Drawing	arrows	 43	
5.5	Drawing	highlight	zones	 43	
5.6	Drawing	filters	 44	
5.7	Drawing	trace	lines	 44	
5.8	Drawing	text	 44	
5.9	Drawing	candles	 44	

6.	Dialog	fields	 45	

7.	Notes	for	advanced	developers	 47	
7.1	Class	frame	 47	

8.	Further	classes	&	functions	of	the	API	 48	
8.1	Compatibility	MT4/MT5	 48	
8.2	File	__MT_native.mqh	 48	
8.3	File	__ChartExt.mqh	 48	
8.4	File	XVars.mqh	 48	
8.5	File	Comment.mqh	 49	

Copyright	/	Impressum	 50	
	

	

	 4	

1.	API	for	Developers	2.0	
The	API	2.0	is	now	called	StereoMQL	and	is	dedicated	to	all	those	traders	and	developers,	who	are	looking	for	
an	easy	way	to	develop	automations.	Any	automations	which	are	created	using	StereoMQL	are	compatible	to	
StereoTrader	for	MetaTrader	4	and	MetaTrader	5	without	any	changes.	

Any	automations	which	are	created	for	StereoTrader	are	called	Stereo	Expert	Advisors	 (SEA).	Such	an	SEA	 is	
developed	as	an	indicator	which	sends	trading	signals	to	StereoTrader.	

One	hand,	the	API	itself	is	the	interface	but	on	the	other	hand	it	 is	also	a	very	powerful	class	construct,	which	
makes	it	very	easy	to	evaluate	bars,	 indications	etc.	and	to	built	automated	processes	in	a	very	“human”	way,	
which	is	normally	not	available	to	MetaTrader.	

1.1 The	Estimator	
StereoTrader	comes	with	a	module	called	“Estimator”.	The	Estimator	allows	you	to	backtest	strategies	visually.	
Trades,	 including	 visualisation	 of	 trailing	 stops	 become	 visible	 in	 the	 chart,	 results	 are	 displayed	 on	 the	 fly	
without	running	the	Strategy-Tester.	This	makes	is	very	comfortable	to	develop	and	verify	strategies.	As	soon	as	
a	parameter	 is	 changed	at	 the	panel,	 the	Estimator	visualizes	 the	changes	 in	 the	chart.	 The	 following	picture	
shows	the	RangeBreakOut	strategy,	which	is	included	as	sample	with	the	API.	

	

(StereoTrader	with	Estimator	–	trades	become	visible	in	the	chart)	

	

	 5	

	

1.2 Easy	coding	
A	short	example?	The	following	code	evaluates	the	current	ATR	(average	true	range)	and	opens	a	position,	 if	
the	last	bar	exceeds	the	ATR	twice.	

//+--+
//| Include the API and define the SEA |
//+--+
#include <StereoTrader_API\StereoAPI.mqh>
DECLARE_SEA_BEGIN("CandleATR01")

//+--+
//| Iteration |
//+--+
SEA_EVALUATE
 {
 //--- Get out if last bar is below ATR x 2.0
 if (_LastBar.Range()<_Bars.ATR(14)* 2.0)
 return;

 //--- Bullish candle, buy ...
 else if (_LastBar.IsBullish())
 Buy();

 //--- Bearish candle, sell
 if (_LastBar.IsBearish())
 Sell();

 return;
 }

//+--+
//| Indication |
//+--+
SEA_INDICATE
 {
 // Optional drawing functions
 }

//+--+
//| End declaration of StereoEA |
//+--+
DECLARE_SEA_END
	

That´s	it!			

With	native	MQL,	the	code	for	the	same	purpose	would	be	more	than	a	hundred	lines.		But	nevertheless	you	still	
have	 full	 access	 to	 all	 functions	 of	 MQL4/5	 and	 in	 case	 if	 you	 are	 a	 skilled	 programmer,	 there	 will	 be	 no	
limitations	at	all.	

1.3 Architecture	of	SEAs	
The	API	of	StereoTrader	is	designed	purely	object	oriented.	To	understand	this,	especially	for	those	who	are	not	
familiar	with	object	oriented	programming,	the	following	figure	should	help	to	demonstrate	the	logic.	

	

	

	

	 6	

	
(The	signal	flow)	

	

The	 blue	 box	 is	 the	 environment/scope,	 where	 “you”	 are.	 From	 here,	 you	 have	 direct	 access	 to	 any	 trade	
commands,	trade	functions,	trade		variables	and	so	on.	Therefore,	if	a	command	e.	g.	for	buying	is	send,	there	is	
no	prefix.	Example:	

Buy();
Flat();
...

The	other	objects	represent	the	elements	as	described.	Whenever	you	access	a	function	of	these	objects,	such	
function	calls	are	always	preceeded	by	the	name	of	the	object.	Example:	

double atr=_Bars.ATR(14,1);
	

And	 so	 on.	 	 This	 is	 how	 object	 oriented	 programming	 works	 –	 basically.	 The	 result	 is	 less	 code	 and	 better	
understanding	of	the	code.		

1.4	Steps	to	build	
The	 API	 allows	 for	 very	 quick	 and	 very	 efficient	 development	 of	 Stereo	 Expert	 Advisors	 (SEAs)	 which	 are	
actually	indicators	that	send	trade	commands	to	the	StereoTrader,	which	acts	as	a	host.	All	this	without	all	the	
hassle	of	order	management,	because	this	is	done	entirely	by	StereoTrader.	

To	create	such	an	SEA,	use	the	MetaTrader	Editor	and	create	a	new	indicator.	Then	remove	all	the	code	and	use	
the	following	base:	

1.	Include	the	API	

#include <StereoTrader_API\StereoAPI.mqh>

2.	Declare	the	SEA	using	the	macro		

DECLARE_SEA_BEGIN(“My SEA”)

3.	Define	the	function	SEA_EVALUATE	and	evaluate	your	signals	here	

SEA_EVALUATE
 {
 if (…)

Buy();

	

	 7	

 else
 Sell();

}
4.	At	the	end	of	the	file,	use	the	macro		

DECLARE_SEA_END

This	is	all	what	needs	to	be	coded	basically.			

	

	

(StereoTrader	with	Sample	SEA	loaded,	trades	are	visualized	by	the	Estimator)	

1.5	Event-Processing	
The	 code	 of	 every	 SEA	 is	 executed	 within	 event	 function	 blocks.	 Such	 functions	 are	 processed	 during	
initialization,	 timer	 processing	 or	when	 the	 user	 changes	 a	 parameter.	 For	 each	 event	 there	 is	 a	 pre	 defined	
function	and	the	code	should	be	located	only	within	such	functions.	Every	function	is	represented	by	a	macro,	
these	are	explained	below.		

Do	not	confuse	with	the	complexity.	 In	most	cases	you	will	need	only	the	main	functions	which	are	SEA_INIT,	
SEA_INDICATE,	SEA_EVALUATE.		

	

SEA_INIT {}

Original:	virtual	bool	OnInit(SSTData	&_Host)	

Executed	 one	 time	 at	 initialization/start	 of	 the	 SEA.	 This	 block	 is	 used	 for	 variable	
initializations	and	to	set	up	parameters	of	the	SEA.	

Return	value:	true	in	case	of	success,	false	if	not.		

	

	 8	

SEA_DEINIT {}

Original:	virtual	void	OnDeinit(SSTData	&_Host,	const	int	reason)	

Executed	one	time	before	the	SEA	is	terminated	

SEA_DEACTIVATE {}

Original:	virtual	void	OnDeactivatet(SSTData	&_Host)	

Executed	 when	 SEA	 is	 deactivated,	 e.	 g.	 when	 AutoTrading	 was	 switched	 off.	 The	
function	is	also	executed	prior	to	SEA_DEINIT.	

SEA_RESET {}

Original:	virtual	void	OnReset(SSTData	&_Host)	

Executed	 every	 time	 when	 the	 SEA	 is	 resetted.	 Such	 a	 reset	 occurs	 whenever	 the	
calculation/indication	 becomes	 invalid.	 In	 other	 words,	 when	 the	 user	 changes	 a	
parameter	 at	 the	panel,	 at	 StereoTrader	panel	 etc..	 The	 function	 is	 also	 executed	 after	
SEA_INIT	during	the	first	reset.	

SEA_INITPANEL {}

Original:	virtual	void	OnInitPanel(SSTData	&_Host)	

Executed	one	time	before	the	first	execution	of	SEA_EVALUATE	

SEA_INDICATE {}

Original:	virtual	void	OnIndicate(SSTData	&_Host)	

Executed	with	every	bar.	Used	for	calculations	and	drawings,	does	NOT	accept	any	trade	
commands	such	as	Buy()	or	Flat()	

SEA_EVALUATE {} *

Original:	virtual	void	OnEvaluate(SSTData	&_Host)	

Executed	with	every	bar	or	 tick	 after	SEA_INDICATE.	Shall	 be	used	 for	 calculations	and	
trade	command	executions	such	as	Buy(),	BuyOrder(),	Flat()	etc.	

SEA_TIMER {} *

Original:	virtual	void	OnTimer(SSTData	&_Host)	

Executed	 on	 timer	 intervals,	 as	 specified	 by	 	 SetTimer()	 function	 during	 SEA_INIT.	 The	
function	does	also	accept	trade	commands.	

SEA_USER {} *

Original:	virtual	bool	OnUserInput(SSTData	&_Host)	

	

	 9	

Executed	 whenever	 the	 user	 changes	 a	 parameter	 at	 the	 SEA-panel	 or	 StereoTrader-
panel,	prior	to	SEA_RESET.	The	function	does	accept	trade	commands.	

Return	value:	true	if	calculation	becomes	invalid	and	a	reset	shall	occur	

SEA_CHARTEVENT {}

Original:	virtual	void	OnChartEvent(SSTData	&_Host,	const	 int	 id,const	 long&	 lparam,const	
double&	dparam,const	string&	sparam)	

Executed	with	any	chart-event	and	identical	to	the	MT4/MT5	function.	Please	refer	to	the	
documentation	 of	 MetaTrader	 for	 additional	 information.	 The	 function	 parameters	 id,	
lparam,	dparam	and	sparam	are	passed	as	usual	and	return	code	is	void.		

SEA_LOADDATA {}

Original:	virtual	void	OnLoadData(SSTData	&_Host)	

Executed	when	SEA	loads	preset	data.	You	may	use	this	function	to	load	additional	data,	
which	may	also	be	saved	with	the	preset	file.	Available	functions	are		

double LoadDouble(void)
bool LoadBool(void)
int LoadInt(void)
string LoadText(void)

Please	 note	 that	 all	 data	 is	 stored	 sequentially,	 therefore	 the	 order	 and	 count	 of	 data	
during	loading	and	saving	must	be	always	identical.		

If	you	need	to	access	the	preset	file	on	your	own,	the	file	handle	is	stored	in	the	variable	
m_filehandle.		

SEA_SAVEDATA {}

Original:	virtual	void	OnSaveData(SSTData	&_Host)	

Executed	when	SEA	saves	preset	data.	You	may	use	this	function	to	save	additional	data,	
which	may	also	be	saved	with	the	preset	file.	Available	functions	are		

void SaveDouble(double value)
void SaveBool(bool value)
void SaveInt(int value)
void SaveText(string value)

Please	 note	 that	 all	 data	 is	 stored	 sequentially,	 therefore	 the	 order	 and	 count	 of	 data	
during	loading	and	saving	must	be	always	identical.		

If	you	need	to	access	the	preset	file	on	your	own,	the	file	handle	is	stored	in	the	variable	
m_filehandle.		

SEA_LOADDEFAULT {}

Original:	virtual	void	OnLoadDefault(SSTData	&_Host)	

	

	 10	

Executed	instead	of	SEA_LOADDATA	when	preset	file	does	not	exist.		

SEA_HOST {}

Original:	virtual	bool	OnHost(SSTData	&_Host)	

Executed	when	data	has	changed	in	StereoTrader	and	_Host	structure	was	updated		

Return	value:	true	if	reset	is	generally	possible	after	execution.		

* All functions with an asterisk allow for the usage of trade commands

	

	

	

	

	 11	

2.	Processing	logic	
It´s	also	necessary	to	understand	the	flow	of	processing,	before	you	start	to	develop	own	strategies.			

There	are	 two	key	 functions,	SEA_INDICATE	and	SEA_EVALUATE.	SEA_INDICATE	 is	 called	 for	every	bar	 in	 the	
chart,	SEA_EVALUATE	is	only	called	when	evaluation	is	requested,	e.	g.	when	autotrading	is	used	or	estimation	
is	activated.		

The	function	macro	SEA_INDICATE	can	be	used	to	separate	indications,	such	as	drawings,	calculations	etc.	from	
evaluation	processes.	The	function	SEA_INDICATE	is	called	one	time	for	each	bar.			

SEA_EVALUATE	is	processed	for	every	bar	from	left	to	right	which	could	produce	a	signal.	In	case	of	operating	
tick	by	tick,	SEA_EVALUATE	is	called	on	every	tick.	In	case	of	operating	with	finished	bars	only,	SEA_EVALUATE	
is	called	only	when	a	new	bar	is	opened.		

2.1	Orientation		
As	mentioned	 before,	 the	 evaluation	 functions	 SEA_INDICATE	 and	 SEA_EVALUATE	 are	 processed	 per	 bar	 or	
tick,	from	left	to	right,	from	past	to	present.	In	other	words,	you	“are”	always	at	the	“current”	bar,	no	matter	if	
“current”	is	somewhere	in	the	past	or	if	 it	 is	the	last	bar	in	the	chart.	You	don´t	need	to	care	about	it,	the	API	
manages	this	for	you.		

	

	

	

The	bars	 in	 the	chart	are	 represented	by	 the	_Bars	object.	The	 functions	of	 this	object	mostly	 require	a	shift	
value	to	adress	a	specific	bar	or	a	specific	set	of	bars.	A	shift	value	of	zero	(default)	points	to	the	current	bar	
which	either	has	just	been	opened	(finished	bar	mode)	or	which	is	just	about	to	be	processed	(tick	mode).	

This	method	of	 adressing	bars	 is	 completely	different	 to	native	MQL	programming,	but	makes	 it	much	more	
easy	to	produce	readable	and	compact	code.			

For	example,	if	you	want	to	evaluate	the	ATR	of	the	recently	finished	14	bars,	the	function	call	would	just	be:	

int atr=_Bars.ATR(14,1);
	

And	if	you	need	to	know	if	the	bar	before	the	previously	closed	bar	is	a	bullish	hammer,	the	code	would	be:	

if (_Bars.IsHammer(2) && _Bars.IsBullish(2)) ...
	

Additionaly,	there	are	some	functions	to	support	the	orientation:	

	

	

	 12	

IsFirstBar ()

returns	true	if	the	very	first	bar	(left	side)	is	processed	

IsLastBar ()

returns	true	if	the	very	last	bar	(right	side)	is	processed	

IsNewHour()

returns	true	if	the	current	bar	starts	in	a	new	hour	

IsNewDay ()

returns	true	if	the	current	bar	starts	in	a	new	day	

IsNewWeek()

returns	true	if	the	current	bar	starts	in	a	new	week	

IsNewBar ()

returns	true	if	a	new	bar	is	built	and	another	one	is	just	finished.	If	one	does	not	operate	
on	every	tick,	this	value	is	always	true.	

IsCurrentDay(int shift=0)

True	if	the	date	of	the	adressed	bar	is	in	the	current	day	(local	time)		

IsCurrentWeek(int shift=0)

True	if	the	adressed	bar	is	in	the	current	week	(local	time)		

IsInPeriod(int days, int shift=0)

True	if	the	adressed	bar	is	in	in	a	time	range,	measured	from	local	time	until	the	specified	
number	of	days	backwars.	This	function	is	useful,	 if	an	 indication	shall	be	displayed	only	
for	e.	g.	14	days	backwards.		

_BarsCount

Contains	the	number	of	all	bars	in	the	chart	

_Index

Contains	the	index	of	the	current	processed	bar	from	left	to	right,	whereby	0	is	the	very	
first	 bar	 on	 the	 left	 side.	 This	 variable	 may	 be	 used,	 if	 an	 SEA	 needs	 access	 to	 an	
array/buffer	which	is	part	of	an	indication	built	in	OnCalculate().		

For	example,	the	following	code	is	an	extract	from	an	SEA	which	builds	and	visualizes	the	
ATR	by	the	usage	of	OnCalculate()	and	stores	the	results	 into	the	buffer	m_atr[].	Within	
SEA_EVALUATE,	the	buffer	values	are	accessible	directly	by	_Index.	

SEA_EVALUATE
 {
 double atr=m_atr[_Index];
 }

_Shift

	

	 13	

Current	shift	value,	if	it´s	necessary	to	calculate	indications	which	are	not	part	of	the	API.	
Without	any	headache,	it´s	easy	to	add	additional	calculations	which	are	based	on	native	
MQL.		

SEA_EVALUATE
 {
 double mfi=iMFI(NULL,PERIOD_CURRENT,20,_Shift);
 }

	

2.2	StereoTrader	host	data		
A	structure	which	contains	most	relevant	data	of	the	StereoTrader	host	platform	is	passed	to		every	function.	
This	structure	is	accesible	by	its	name		

_Host	

and	contains	information	such	as		

- Symbol	profile	data	

- Symbol	details	

- Serial	numbers	

- Build	

- Strategy	name	

- Colors	

- Time	settings	

- Settings	of	the	pool	panel	

To	see	which	member	variables	and	functions	are	available,	just	type	“_Host.”	In	the	editor,	and	the	MT-editor	
will	display	a	list	and	a	description	of	the	variables.	

	

	

Members	which	start	with	uppercase	letters,	are	functions,	others	are	variables.		

Example	#1	–	retrieve	the	name	of	the	selected	strategy,	edition	and	name	of	the	profile	contract	name	

//+--+
//| Init |
//+--+

	

	 14	

SEA_INIT
{
 Print(“ Strategy: “, _Host.StrategyName() +
 “ Edition: “, _Host.Edition() +
 “ Contract: “, _Host.ContractName());
// ...
}
	

Example	#2	–	retrieving	color	settings	

//+--+
//| Host update |
//+--+
SEA_HOST
{
 color cbull = _Host.clr_bull;
 color cbear = _Host.clr_bear;

// ...
}
	

	

	

	

	 15	

3.	Accessing	bars	

3.1	The	_Bars	object	
As	mentioned	before,	 specific	bars	or	 specific	 sets	of	bars	are	accessible	by	 the	object	_Bars.	 The	parameter	
shift	points	to	the	relative	position	of	the	bar	in	the	chart,	measured	from	the	current	bar.		A	shift	value	of	zero	
points	to	the	current	bar	whereby	a	value	of	1	points	to	the	previously	closed	bar	and	so	on.	

3.1.1	Basic	data	
double _Bars.Open(shift=0)

double _Bars.Close(shift=0)

double _Bars.High(shift=0)

double _Bars.Low(shift=0)

Returns	the	rates	of	the	selected	bar.		

datetime _Bars.Time(shift=0)

Returns	the	raw	time	data	of	the	selected	bar.	

string _Bars.TimeString(shift=0)

Returns	the	time	data	of	the	selected	bar	as	string.	

string _Bars.DateString(shift=0)

Returns	the	date	of	the	selected	bar	as	string.	

int _Bars.Year(shift=0)

int _Bars.Month(shift=0)

int _Bars.Day(shift=0)

int _Bars.Hour(shift=0)

int _Bars.Minute(shift=0)

int _Bars.Second(shift=0)

int _Bars.DayOfWeek(shift=0)

int _Bars.DayOfYear(shift=0)

Returns	time	and	date	values	of	a	selected	bar.	

long _Bars.RealVolume(shift=0)

Returns	the	real	volume	(MT5)	of	the	selected	bar.	

long _Bars.TickVolume(shift=0)

Returns	the	tick	volume	of	the	selected	bar.	

double _Bars.Gap(shift=0)

Returns	the	range	of	the	gap	between	the	selected	bar	and	the	bar	before.	

	

	 16	

3.1.2	Shapes	and	measuring		

bool _Bars.IsBullish(shift=0)

bool _Bars.IsBearish(shift=0)

bool _Bars.IsDoji(double tolerance=0, shift=0)

Evaluates	if	a	bar	is	bullish	or	bearish	or	a	doji.	

double _Bars.Range(shift=0)

The	range	of	a	bar	from	high	to	low.	

double _Bars.TrueRange(shift=0)

The	True	Range	of	a	bar	including	gap	–	if	present.	

double _Bars.BodyRange(shift=0)

double _Bars.WickRange(shift=0)

double _Bars.TailRange(shift=0)

The	range	of	the	bars	body,	wick	or	tail.	

double _Bars.BodyPart(shift=0)

double _Bars.WickPart(shift=0)

double _Bars.TailPart(shift=0)

The	part	of	either	the	body,	the	wick	or	the	tail	of	bar.	The	return	value	is	always	between	
0.0	and	1.0	(0%	to	100%)	

bool _Bars.IsHammer(shift=0)

bool _Bars.IsShootingStar(shift=0)

Returns	the	shape	of	a	bar.		

double _Bars.FiboPrice(double levelmult, shift=0)

Returns	the	fibonacci	price	of	a	specific	bar.	The	parameter	levelmult	specificies	the	level	
as	multiplication	value.		

double _Bars.PivotPrice(ENUM_PIVOT_POINT p, shift=0)

Returns	the	pivot	price	of	a	specific	bar.	The	parameter	p	specificies	the	requested	pivot	
point,	which	is	one	of	the	following:	

PIVOT_POINT_MAIN
PIVOT_POINT_S1
PIVOT_POINT_S2
PIVOT_POINT_R1
PIVOT_POINT_R2

3.1.3	Bar	interaction	and	pattern	
bool _Bars.IsCrossing(double price, int shift=0)

Returns	true	if	the	bar	is	crossing		a	price	level	

bool _Bars.IsTouchingHigh(double price, int shift=0)

	

	 17	

Returns	true	if	the	bars	wick	is	touching	or	crossing		a	price	level	

bool _Bars.IsTouchingLow(double price, int shift=0)

Returns	true	if	the	bars	tail	is	touching	or	crossing		a	price	level	

bool _Bars.IsEngulfingLong(int shift=0)

bool _Bars.IsEngulfingShort(int shift=0)

Returns	true	in	case	of	a	long/short	engulfing	pattern	

bool _Bars.IsReversingLong(int shift=0)

bool _Bars.IsReversingShort(int shift=0)

Returns	true	in	case	of	a	long/short	reversal	pattern	

3.1.4	Advanced	

Bool GetOLHC(double &o, double &l, double &h, double &c, int shift=0)

Returns	open,	low,	high	and	close	values	of	a	specific	bar	

CBar * _Bars.BarGet(int shift=0)

Returns	an	object	pointer	to	a	CBar	object	which	holds	data	of	a	specific	bar.	

bool BarGetSeries(CBar &bars[], int cntbars, int shift=0)

Fills	an	CBar	array	with	data.	

bool BarUpdate(CBar &bar, int shift=0)

Updates	a	CBar	object	

3.1.5	Indications	

The	_Bars	object	allows	also	access	to	multiple	bars,	 for	 indications	etc.	The	currently	 implemented	functions	
are:	

bool _Bars.IsCrossingUp (series[], int shift=0)

bool _Bars.IsCrossingDown (series[], int shift=0)

Returns	true	if	the	selected	bar	is	crossing	a	series	buffer.			

double _Bars.ATR (int span=14, int shift=0)

Calculates	the	Average	True	Range.	

double _Bars.AR (int span=14, int shift=0, ENUMARMODE mode=ARMODENORMAL,
ENUMCANDLEBASE base=WRONGVALUE)

Calculates	 the	 Average	 Range	 of	 a	 specific	 number	 of	 bars.	 The	 function	 is	 able	 to	
calculate	 the	 range	 only	 of	 open	 and	 close	 prices,	 if	 base	 is	 set	 to	
CANDLE_BASE_OPENCLOSE.	

Furhtermore,	 when	 mode	 is	 set	 to	 ATR_MODE_BEARISH	 or	 ATR_MODE_BULLISH,	 the	
function	calculates	only	the	range	of	bullish	or	bearish	bars.	

	

	 18	

double _Bars.HighestHigh (int span, int shift=0)

double _Bars.LowestLow (int span, int shift=0)

Returns	the	highest	high	or	lowest	low	in	a	specific	range	of	bars.	

double _Bars.SMA (int periods, int shift=0)

double _Bars.EMA (int periods, int shift=0)

double _Bars.SMMA (int periods, int shift=0)

double _Bars.LWMA (int periods, int shift=0)

Calculates	different	types	of	moving	averages.	

long _Bars.TickVolumeAverage(int periods=14, int shift=0)

long _Bars.RealVolumeAverage(int periods=14, int shift=0)

Calculates	averages	of	volume.	

double _Bars.RSI(int periods=14, int shift=0)

Calculates	the	RSI	

double _Bars.StochasticMain(int period_k=5, int period_d=3, int slowing=3, int
shift=0)

double _Bars.StochasticSignal(int period_k=5, int period_d=3, int slowing=3, int
shift=0)

SIGNAL _Bars.Stochastic(int period_k, int period_d, int slowing, double
signallinedistance=20, int shift=0)

Calculates	stochastic.	

bool _Bars.IsLocalHigh(int bars, int shift=0, double tolerance=0)

bool _Bars.IsLocalLow(int bars, int shift=0, double tolerance=0)

Evaluates	if	a	bar	marks	a	local	high	or	low	

bool _Bars.IsSMASlopingUp(int period, int span=2, int shift=0)

bool _Bars.IsEMASlopingUp(int period, int span=2, int shift=0)

bool _Bars.IsLWMASlopingUp(int period, int span=2, int shift=0)

bool _Bars.IsSMMASlopingUp(int period, int span=2, int shift=0)

bool _Bars.IsSMASlopingDown(int period, int span=2, int shift=0)

bool _Bars.IsEMASlopingDown(int period, int span=2, int shift=0)

bool _Bars.IsLWMASlopingDown(int period, int span=2, int shift=0)

bool _Bars.IsSMMASlopingDown(int period, int span=2, int shift=0)

Evaluates	if	moving	average	is	sloping	upwards	or	downwards	

3.2	Single	bars		
Besides	accessing	a	series	of	bars,	there	are	also	objects	which	represent	a	single	bar.	These	objects	belong	to	
the	class	CBar.	Of	course	it´s	possible	to	define	also	own	instances	of	such	an	CBar	object.	

3.2.1	Predefined	single	bar	objects	

The	predefined	single	bar	objects	are:	

	

	 19	

_CurBar

The	current	bar.	

_PrevBar

The	previously	finished	bar	

_CurHour

The	current	hour	

_PrevHour

The	previous	hour	

_CurDay, _PrevDay, _CurWeek and _PrevWeek.

	

Example:	

bool hammer=_CurBar.IsHammer();
datetime t=_PrevBar.Time;
double weekhigh=_CurWeek.High;

	

3.2.2	Data	of	the	current	bar	

To	make	coding	easier,	the	following	variables	contain	already	some	information	about	the	current	bar,	copied	
from	the	_CurBar	object.	

_Price

The	deal	price.	In	case	if	an	SEA	operates	with	each	tick,	the	variable	returns	the	current	
close	price	of	the	unfinished	bar.	Otherwise	it´s	the	open	price	of	the	next	bar.	

_Bid / _Ask

The	corresponding	bid	or	ask	price	

Some	self	explaining	variables	which	return	results	of	the	current	–	the	new	–	bar.		In	case	if	the	SEA	operates	
with	finished	bars	only,	the	variables	_Low,	_High,	_Open	and	_Close	have	all	the	same	value:	The	open	price.		

	

_Open

_Low

_High

_Close

_TickVolume

_RealVolume

_Time

_Hour

_Minute

_Day

	

	 20	

_DayOfWeek

_Month

_Year

	

Further	predefined	variables	which	contain	data	of	the	current	bar:	

_SymbolName

Contains	the	current	symbol	name	

_TimeFrame

Contains	the	current	timeframe	

_BarsCount

The	number	of	bars	in	the	chart	

3.2.3	Basic	data	of	single	CBar	objects	

Analogue	to	the	functions	of	the	_Bars	object,	CBar	objects	have	also	functions	and	member	variables	to	access	
the	data	of	bars.	Of	course,	single	bars	never	use	a	shift	parameter,	because	such	objects	always	represent	one	
specific	bar.		

Member	variables:	

double .Open

double .Close

double .High

double .Low

Contain	the	specific	rate	of	a	bar.			

Please	 note:	 In	 case	 of	 the	 _CurBar	 object	 while	 not	 operating	 in	 tick	 mode,	 these	
member	variables	have	all	the	same	value	to	avoid	miscalculations	when	the	Estimator	is	
active.		

datetime .Time

Contains	the	raw	time	data.	

int .Year

int .Month

int .Day

int .Hour

int .Minute

int .Second

int .DayOfWeek

int .DayOfYear

	

	 21	

Contain	time	and	date	values.	

long .RealVolume

Contains	the	real	volume	(MT5	only).	

long .TickVolume

Contains	the	tick	volume.	

double .Gap

Contains	the	range	of	the	gap	between	the	bar	in	relation	to	the	previous	bar.		

Member	functions/methods:	

string .TimeString()

Returns	the	time	data	of	the	selected	bar	as	string.	

string .DateString()

Returns	the	date	of	the	selected	bar	as	string.	

3.2.4	Member	functions	for	shapes	and	measuring		

bool .IsBullish()

bool .IsBearish()

bool .IsDoji(double tolerance=0)

Evaluates	if	a	bar	is	bullish	or	bearish	or	a	doji.	

double .Range()

The	range	of	a	bar	from	high	to	low.	

double .TrueRange()

The	True	Range	of	a	bar	including	gap	–	if	present.	

double .BodyRange()

double .WickRange()

double .TailRange()

The	range	of	the	bars	body,	wick	or	tail.	

double .BodyPart()

double .WickPart()

double .TailPart()

The	part	of	either	the	body,	the	wick	or	the	tail	of	bar.	The	return	value	is	always	between	
0.0	and	1.0	(0%	to	100%)	

bool .IsHammer(double tailmin=0.55)

bool .IsShootingStar(double wickmin=0.55)

Return	the	shape	of	a	bar.		

	

	 22	

bool .IsSolid(double wickmax=0.15, double tailmax=0.15)

Returns	 true	 if	 the	 bar	 is	 solid	 whereby	 wick	 and	 tail	 must	 not	 exceed	 the	 specified	
maximal	values	for	wick	and	tail.	

double .FiboPrice(double levelmult, shift=0)

Returns	the	fibonacci	price	of	a	specific	bar.	The	parameter	levelmult	specificies	the	level	
as	multiplication	value.		

double .PivotPrice(ENUM_PIVOT_POINT p, shift=0)

Returns	the	pivot	price	of	a	specific	bar.	The	parameter	p	specificies	the	requested	pivot	
point,	which	is	one	of	the	following:	

PIVOT_POINT_MAIN
PIVOT_POINT_S1
PIVOT_POINT_S2
PIVOT_POINT_R1
PIVOT_POINT_R2

3.1.5	Bar	interaction	

bool .IsCrossing(double price)

Returns	true	if	the	bar	is	crossing		a	price	level	

bool .IsBreaking(double price)

Returns	true	if	the	body	of	the	bar	crosses	a	specific	price	level.	

bool .IsBreakingLong(double price, double exceed=0)

bool .IsBreakingShort(double price, double exceed=0)

Returns	true	if	the	body	of	the	bar	crosses	price	bullish/bearish.	

bool .IsTouchingHigh(double price)

Returns	true	if	the	bars	wick	is	touching	or	crossing		a	price	level	

bool .IsTouchingLow(double price)

Returns	true	if	the	bars	tail	is	touching	or	crossing		a	price	level	

	

	 23	

4.	Signals	

4.1	Setup	functions	
Any	SEA	gets	registered	automatically	by	the	base	class.	The	function	SEA_INIT	(OnInit())	may	be	used	to	define	
behaviour	 and	 parameters	 of	 the	 StereoEA,	 but	 is	 not	 needed	 in	 any	 case.	 Any	 such	 property	 should	 be	 set	
during	OnInit.	

SEA_INIT
 {

SetEveryTick(true);
SetTradeModes(TRADE_MODE_STEREO_FUTURE);
//--- Other stuff
//...
//--- Success
return true;
}

	

Any	initialization	is	optional.	All	of	these	function	may	be	used	for	own	purposes	if	needed	only.	

void SetOnCalculate (bool flag, bool arraysasseries)

Indicates	that	the	SEA	is	using	a	standard	OnCalculate()	function	block	for	indications,	as	it	
is	 the	normal	way	when	developing	 indicators	with	MQL.	 If	 this	property	 is	not	set,	 the	
OnCalculate()	will	not	be	called.			

The	parameter	arrayasseries	specifies,	that	the	passed	arrays	such	as	close	[],	open[]	will	
be	 preprocessed	 before	 OnCalculate()	 is	 used.	 	 For	 more	 informations	 about	
OnCalculate(),	please	refer	to	the	MQL	language	reference	of	MetaQuotes.	

void SetIndicate (bool flag)

Informs	the	API	 if	 the	SEA	uses	an	 indication	block.	This	provides	an	alternative	way	 to	
use	 indications	which	may	draw	on	 the	chart.	 The	SEA_INDICATE	block	 is	 always	called	
prior	 to	 SEA_EVALUATE	 and	 within	 its	 not	 possible	 to	 use	 any	 trade	 commands.	 By	
default,	this	property	is	activated.	

SEA_INDICATE
 {

if (_Hour==m_time1.Hour() && _Minute==m_time1.Minute())
 {
 DrawLine("Timeline @%price (%time)",_Price,clrDarkOrange,_Time);
 return;
}

void SetEvaluate (bool flag)

Tells	the	API	if	the	SEA	uses	an	evaluation	block,	which	is	used	to	evaluate	candles	and	to	
send	trade	commands.		By	default,	this	property	is	activated.		

SEA_EVALUATE
 {

if (...)
 Buy();
}

void SetDaysToProcess(int days=0)

	

	 24	

Limits	the	number	of	the	past	days	to	process	for	indication	and	estimation.	You	may	use	
this	function	to	speed	up	processing	when	using	complex	indications.	

void SetTimeWindow(int beginh, int beginm, int endh, int endm)

Limits	the	hours	of	processing	to	a	specific	time	range.		

void SetDefaultShift(shift=1)

The	default	number	of	bars	which	are	shifted	backwards	in	any	evaluations.		

	 	
(Default	shift	1	–	left	side	–	and	default	shift	0	–	right	side)	

On	the	 left	side,	when	dealing	with	 finished	candles,	 the	default	shift	 is	 1,	which	means	
any	shift-value	is	added	by	1	and	the	not	yet	finished	bar	is	accessible	by	a	shift	value	of	-1.		

_Bars.	Example:	

SetDefaultShift(1);

if (_Bars.IsHammer()) //--- last closed bar
 Buy();

During	SEA_EVALUATE,	this	example	detects	a	hammer	in	the	previous	bar.	In	case	if	the	
default	shift	would	be	0,	the	same	example	would	have	to	look		like	this	

DefaultShift(0);

if (_Bars.IsHammer(1)) //--- last closed bar
 Buy();

void SetEveryTick (bool flag)

Indicates	 if	 the	 function	macro	SEA_EVALUATE	 is	 called	on	every	 tick.	 If	 this	property	 is	
not	 set,	 the	 function	will	be	 called	only	when	a	new	bar/candle	 is	 about	 to	be	created.	
Nevertheless,	 during	SEA_EVALUATE	 you	 still	 have	 the	 additional	 possibility	 to	 test,	 if	 a	
new	 bar	 has	 just	 been	 created	 by	 using	 the	 IsNewBar()	 function	 to	 avoid	 unnecessary	
calculation	time.	

void SetSignalRules (ENUM_SEA_OPPOSITEFLAG flag, bool overlap)

Defines	 the	 behaviour	 in	 case	 of	 counter	 signals,	 e.	 g.	 Buy()	 when	 short	 positions	 are	
opened,	or	Sell()	when	long	positions	are	active.	Possible	values	are	

SEA_OPPOSITE_NONE // Open the position
SEA_OPPOSITE_NOTRADE // Prohibit opening
SEA_OPPOSITE_CLOSE // Close opposite

	

	 25	

The	parameter	overlap	specifies	if	multiple	signals/positions	of	the	same	direction	(Buy()	/	
Sell())	are	allowed	at	the	same	time.	By	default,	this	is	restricted	to	one	position/signal.	

void SetSignalMinDistance (int bars)

Specifies	 the	 minimal	 distance	 between	 Buy()	 and	 Sell()	 signals,	 meaured	 in	 bars.	 By	
default,	this	value	is	1,	which	means,	only	one	signal	per	bar	is	allowed.		

void SetRoom(double roompoints)

Predefines	 a	 minimal	 room	 between	 orders	 to	 prevent	 overlapping	 orders.	 The	
parameter	 roompoints	 defines	 the	 space	 around	 any	 new	order	which	 shall	 be	 verified	
first.	If	roompo	ints	is	set	to	10,	StereoTrader	would	not	create	an	order	if	there	is	already	
another	order	or	position	of	the	same	direction	within	in	a	distance	of	10	points.		

void SetTradeModes (supportedmode=0xFFFF)

supportedmode	defines	the	mode	in	which	the	SEA	works,	whereby	–	0xFFFF	(standard)	
means	all	modes.	The	following	enum	constants	are	defined	and	may	be	combined	by	a	
bitwise	OR	operation:	

TRADE_MODE_SINGLE_HEDGE = 1
TRADE_MODE_SINGLE_NOHEDGE = 2
TRADE_MODE_STEREO_HEDGE = 4
TRADE_MODE_STEREO_FUTURE = 8

void SetTrueRangeMode (supportedmode=0xFFFF)

supportedmode	 defines	 the	 true	 range	measurement	method.	 If	 such	a	mode	 is	 set,	 all	
bar	 values	 are	 calculated	 on	 the	 base	 of	 their	 true	 range	 including	 gaps.	 Hereby	 two	
different	modes	may	be	 used,	 the	 normal	mode,	which	 adds	 gaps	 to	 the	 bar	 after	 the	
gap,	and	the	forwarding	mode,	which	adds	the	gap	to	the	previous	bar.		

TRUERANGE_MODE_NONE = 0
TRUERANGE_MODE_NORMAL = 1
TRUERANGE_MODE_FORWARD = 2

void SetUsesVars(bool flag=true)

Indicates	 that	 local	 trading	 variables	 are	 used.	 By	 default,	 this	 is	 enabled.	 A	 disabling	
increased	the	backtesting	speed,	in	case	if	no	variables	are	used.	

void SetExpirationDate(datetime date)

Limits	the	usablity	of	an	SEA	to	a	specific	date.		

4.2	Basic	commands		
When	talking	about	signals,	primilary	the	functions	Buy()	and	Sell()	are	meant.		

4.1.1	Open/close	positions		

void Buy (string info=NULL)

void Sell (string info=NULL)

	

	 26	

Sends	a	signal	to	open	a	buy/sell	position	or	to	activate	the	strategic	long/short	order	in	
dependence	of	which	order	mode	is	selected	at	the	AutoTrading	panel.			

The	parameter	 info	 is	used	as	tooltip	text	of	 the	signal	arrow	which	 is	displayed	on	the	
chart.	

void Flat ();

void FlatLong ();

void FlatShort ();

Close	all	positions	and	delete	all	orders.	

void CloseBuy (double profitpoints=-9999999)

void CloseSell (double profitpoints=-9999999)

Close	all	buy/sell	positions		

void CloseAll (double profitpoints=-999999)

Close	all	positions	

4.1.2	Blocking	/	Unblocking	

void BlockBuy()

Sends	a	signal	to	prevent	autotrading	from	opening	any	buy	positions	or	sending	any	buy	
orders	of	any	SEA.	

void BlockSell()

Sends	a	signal	to	prevent	autotrading	from	opening	any	sell	positions	or	sending	any	sell	
orders	of	any	SEA	

void BlockAll()

Sends	a	signal	to	prevent	autotrading	from	opening	any	positions	or	sending	any	orders	
of	any	SEA.	

4.2	Pending	orders	
	

void BuyOrder (double price)

void SellOrder (double price)

Sends	a	signal	to	place	a	buy	or	sell	order	at	the	 level	of	the	parameter	price.	 If	price	 is	
below	 the	 current	 price,	 a	 limit	 order	 is	 sent,	 if	 the	 price	 is	 above,	 a	 stop	 order	 is	
generated.		

void BuyMTO (double distance=2)

void SellMTO (double distance=2)

Sends	a	signal	to	open	a	market	trail	order	(MTO)	for	either	buying	or	selling.		The	MTO	
variant	can	be	more	effective	than	a	normal	market	order,	especially	when	sending	after	
a	bar	was	just	closed.	

void DeleteBuyOrders()

	

	 27	

void DeleteSellOrders()

Remove	all	buy/sell	orders.	

void DeleteAllOrders()

Guess	…	;)	

4.2.1	Order	settings	

Any	attribute/setting	of	an	order	must	be	sent	prior	to	the	actual	command	which	places	an	order.		

void OrderId (string id)

Defines	 an	 order	 id.	 The	 value	 is	 used	 to	 identify	 orders	 sent	 by	 the	 SEA	 for	 further	
modification,	selection	or	deletion.	There	is	no	obligation	to	use	this	function,	orders	will	
also	be	placed	without	an	id.	

void OrderSize (double size)

Sets	the	absolute	size	of	a	new	order	or	position	as	lot	value.	

void OrderSizeRel (double factor)

Multiplies	the	current	order	size	with	the	value	in	factor.		

void OrderComment (string comment)

Defines	 the	 comment	 for	 any	 following	 new	order.	 In	 case	 of	multiple	 orders	 in	 a	 row	
with	 different	 comments,	 this	 function	 must	 be	 called	 prior	 to	 each	 function,	 which	
generates	an	order	or	opens	a	position.		

void OrderLimitPullback (double points)

Defines	the	limit	pullback	for	any	following	new	limit	order.	In	case	of	multiple	orders	in	a	
row	 with	 different	 values,	 this	 function	 must	 be	 called	 prior	 to	 each	 function,	 which	
generates	a	limit	order.		

void OrderAttrOCO (bool flag=true)

Sets	the	CS	and	CO	flag	and	forces	cancellation	of	any	other	order	when	executed.	In	case	
of	multiple	orders	in	a	row	with	different	flags,	this	function	must	be	called	prior	to	each	
function,	which	generates	an	order.		

void OrderAttrCS (bool flag=true)

Sets	 the	 CS	 flag	 (order	 cancels	 siblinb	 others)	 for	 any	 following	 new	 order.	 In	 case	 of	
multiple	orders	 in	 a	 row	with	different	 flags,	 this	 function	must	be	 called	prior	 to	each	
function,	which	generates	an	order.		

void OrderAttrCO (bool flag=true)

Sets	the	CO	flag	(cancel	opposite	orders)	for	any	following	new	order.	In	case	of	multiple	
orders	 in	a	 row	with	different	 flags,	 this	 function	must	be	called	prior	 to	each	function,	
which	generates	an	order.		

void OrderAttrREV (bool flag=true)

Sets	 the	 REV	 flag	 (reverse	 position)	 for	 any	 following	 new	 order.	 In	 case	 of	 multiple	
orders	 in	a	 row	with	different	 flags,	 this	 function	must	be	called	prior	 to	each	function,	
which	generates	an	order.		

	

	 28	

void OrderAttrNET (bool flag=true)

Sets	the	NET	flag	(order	compensates	opposite	positions)	for	any	following	new	order.	In	
case	of	multiple	orders	in	a	row	with	different	flags,	this	function	must	be	called	prior	to	
each	function,	which	generates	an	order.		

void OrderTrail (ENUM_SEA_TRAILMODE mode, double distancepts, int period=0)

Indicates	that	the	next	order	which	is	sent	shall	be	trailed	with	the	given	parameters.		The	
following	values	can	be	used	for	the	parameter	mode	

SEA_TRAIL_NONE = 0
SEA_TRAIL_DST = 1
SEA_TRAIL_PLH = 2
SEA_TRAIL_MA = 3
SEA_TRAIL_PLH_PEAK = 5
SEA_TRAIL_PLH_CLOSE = 6

distancepts	 is	 the	 trailing	 distance	 as	 point	 value,	 period	 is	 only	 used	 for	 trailing	 with	
moving	averages	or	other	periodic	trails.	

4.2.2	Order	modification	

void MoveOrder (string id, double price)

Moves	 a	 pending	 order	 to	 another	 price.	 To	 use	 this	 function	 proper,	 the	 command	
OrderId()	which	defines	the	id	of	an	order	has	to	be	used	prior	with	unique	names	for	any	
new	order.	

4.3	Managing	trades		

4.3.1		Stereo	Future	mode	

The	following	functions	are	to	be	used	in	single	mode	and	the	Stereo	Future	mode.		

void SL (double points)

Sets	or	modifies	the	stop	loss.	

void SLAbsolute (double price)

Sets	the	stop	loss	to	an	absolute	price.	If	the	postion	is	not	opened	yet,	the	value	is	saved	
and	the	TP	will	be	adjusted	as	soon	as	the	position	is	opened.		

Please	note,	that	this	commands	have	to	be	used	after	any	order	command	such	as	.Buy()	
or	.BuyOrder(),	otherwise	prior	calls	of	the	functions	have	no	effect.	

void TP (double points)

Sets	the	take	profit.	

void TPAbsolute (double price)

Sets	 the	 take	profit	 to	 an	 absolute	 price.	 If	 the	postion	 is	 not	 opened	 yet,	 the	 value	 is	
saved	and	the	TP	will	be	adjusted	as	soon	as	the	position	is	opened.		

Please	note,	that	this	commands	have	to	be	used	after	any	order	command	such	as	Buy()	
or	BuyOrder(),	otherwise	prior	calls	of	the	functions	have	no	effect.	

	

	 29	

void TrailMode (ENUM_SEA_TRAILMODE mode, double distancepoints, int periods=0)

Defines	the	trailing	mode.	

The	parameter	mode	defines	the	mode,	distancepoints	the	distance	as	points.	In	case	of	
periodic	 low/high	 trailing	 or	 trailing	 based	 on	 moving	 averages,	 the	 paramter	 periods	
defines	the	periods	to	be	used.		mode	is	one	of	the	following:	

SEA_TRAIL_NONE = 0
SEA_TRAIL_DST = 1
SEA_TRAIL_PLH = 2
SEA_TRAIL_MA = 3
SEA_TRAIL_EOP_DST = 4
SEA_TRAIL_PLH_PEAK = 5
SEA_TRAIL_PLH_CLOSE = 6

void TrailDistance (double points)

Defines	the	trailing	distance.	

void TrailBegin (double points)

Defines	where	trailing	begins,	relative	to	the	break	even.	

The	 value	 defines	 also	 the	 break	 even	 trigger,	 in	 case	 if	BEActivate	 is	 used	 to	 save	 the	
break	even.	

void BEAdd (double points)

Defines	the	additional	points	to	add	to	break	even.	

void SLActivate (bool flag)

Activates	or	deactivates	the	stop	loss.	

void TPActivate (bool flag)

Activates	or	deactivates	the	take	profit.	

void TrailActivate (bool flag)

Activates	or	deactivates	the	trailing	stop.	

void BEActivate (bool flag)

Activates	or	deactivates	the	break	even	save	function.	

4.3.2	Functions	for	Stereo	Hedge	mode	

The	following	functions	are	to	be	used	in	virtual	mode	only.		

void SLBuy (double points)

void SLSell (double points)

Sets	the	stop	loss	as	points	of	opened	buy/sell	positions	within	the	pool.	

void SLBuyAbsolute (double price)

void SLSellAbsolute (double price)

	

	 30	

Sets	the	stop	loss	of	opened	positions	within	the	pool	to	an	absolute	price.	If	the	postion	
is	not	opened	yet,	the	value	is	saved	and	the	TP	will	be	adjusted	as	soon	as	the	position	is	
opened.		

Please	note,	that	this	commands	have	to	be	used	after	any	order	command	such	as	.Buy()	
or	.BuyOrder(),	otherwise	prior	calls	of	the	functions	have	no	effect.	

void TPBuy (double points)

void TPSell (double points)

Sets	the	take	profit	as	points	of	opened	buy/sell	positions	within	the	pool.	

void TPBuyAbsolute (double price)

void TPSellAbsolute (double price)

Sets	 the	 take	 profit	 of	 opened	 positions	 within	 the	 pool	 to	 an	 absolute	 price.	 If	 the	
postion	is	not	opened	yet,	the	value	 is	saved	and	the	TP	will	be	adjusted	as	soon	as	the	
position	is	opened.		

Please	note,	that	this	commands	have	to	be	used	after	any	order	command	such	as	.Buy()	
or	.BuyOrder(),	otherwise	prior	calls	of	the	functions	have	no	effect.		

	

void TrailModeBuy (ENUM_SEA_TRAILMODE mode)

void TrailModeSell (ENUM_SEA_TRAILMODE mode, double distancepoints,
int periods=0)

Sets	the	trailing	mode	of	opened	buy/sell	positions	within	the	pool.		

The	parameter	mode	defines	the	mode,	distancepoints	the	distance	as	points.	In	case	of	
periodic	 low/high	 trailing	 or	 trailing	 based	 on	 moving	 averages,	 the	 paramter	 periods	
defines	the	periods	to	be	used.		mode	is	one	of	the	following:	

SEA_TRAIL_NONE = 0
SEA_TRAIL_DST = 1
SEA_TRAIL_PLH = 2
SEA_TRAIL_MA = 3
SEA_TRAIL_EOP_DST = 4
SEA_TRAIL_PLH_PEAK = 5
SEA_TRAIL_PLH_CLOSE = 6

void TrailDistanceBuy (double points)

void TrailDistanceSell (double points)

Sets	the	trailing	distance	in	points	of	opened	buy/sell	positions	within	the	pool.	

void TrailBeginBuy (double points)

void TrailBeginSell (double points)

Defines	where	 trailing	 begins.	 The	 value	 defines	 also	 the	 break	 even	 trigger,	 in	 case	 if	
BEActivateBuy	or	BEActivateSell	is	used	to	save	the	break	even.	

Sets	the	break	even	trigger	value	in	points	of	opened	buy/sell	positions	within	the	pool.	

	

	 31	

void BEAddBuy (double points)

void BEAddSell (double points)

Defines	the	additional	points	to	add	to	break	even	of	opened	buy/sell	positions	within	the	
pool.	

void SLActivateBuy (bool flag)

void SLActivateSell (bool flag)

Stop	loss	activation/deactivation	of	opened	buy/sell	positions	within	the	pool.	

void TPActivateBuy (bool flag)

void TPActivateSell (bool flag)

Take	profit	activation/deactivation	of	opened	buy/sell	positions	within	the	pool.	

void TrailActivateBuy (bool flag)

void TrailActivateSell (bool flag)

Trailing	stop	activation/deactivation	of	opened	buy/sell	positions	within	the	pool.	

void BEActivateBuy (bool flag)

void BEActivateSell (bool flag)

Break	even	save	activation/deactivation	of	opened	buy/sell	positions	within	the	pool.	

4.3.3	Commands	for	manual	exits	

The	following	functions	are	to	be	used	for	manual	exits	and	are	almost	similar	to	the	buttons	below	the	order	
panels.		

void Flat() / FlatLong() / FlatShort()

Closes	all	positions	and	deletes	all	orders.	

bool IsFlat (bool checkorders=false)

Returns	 true	when	 there	 is	 not	 opened	 position.	 If	 checkorders	 is	 set	 to	 true,	 pending	
orders	are	also	recognized.	

void CloseBuy (string id=NULL, double minprofit=-999999999)

Sends	a	signal	to	close	all	buy	positions	of	the	SEA.	In	case	of	strategic	ordering,	this	also	
forces	a	deactivation	of	the	corresponding	Stay	functionality.		

If	 id	 is	specified,	the	function	affects	only	orders	which	match	the	id,	whereby	wildcards	
my	be	used	in	the	id.	

If	minprofit	is	specified,	the	function	forces	only	the	closing	of	all	particular	buy	positions	
which	have	a	profit	of	at	least	the	specified	value	as	points.	

void CloseSell (string id=NULL, double minprofit=-999999999)

Sends	a	signal	to	close	all	sell	positions	of	the	SEA.	In	case	of	strategic	ordering,	this	also	
forces	a	deactivation	of	the	corresponding	Stay	functionality.	

	

	 32	

If	 id	 is	specified,	the	function	affects	only	orders	which	match	the	id,	whereby	wildcards	
my	be	used	in	the	id.	

If	minprofit	ist	specified,	the	function	forces	only	the	closing	of	all	particular	sell	positions	
which	have	a	profit	of	at	least	the	specified	value	as	points.	

void CloseAll (string id=NULL, double minprofit=-999999999)

Sends	a	signal	to	close	all	positions	of	the	SEA.	In	case	of	strategic	ordering,	this	forces	a	
deactivation	of	the	Side		algorithm	and	its	Stay	functionality.	

If	 id	 is	specified,	the	function	affects	only	orders	which	match	the	id,	whereby	wildcards	
my	be	used	in	the	id.	

If	minprofit	 ist	specified,	 the	function	forces	only	the	closing	of	all	particular	buy	or	sell	
positions	which	have	a	profit	of	at	least	the	specified	value	as	points.	

void DeleteBuyOrders(string id=NULL)

Sends	 a	 signal	 to	 deletes	 any	 pending	 buy	 orders	 of	 the	 SEA.	 If	 id	 is	 specified,	 the	
command	will	 only	 affect	 such	 orders	which	match	 the	 specified	 id	 value.	 	 Hereby	 the	
value	for	id	may	be	used	with	wildcards.	Example	for	wildcards:	

DeleteBuyOrders(“OrderName*”)	–	would	delete	all	orders	from	this	SEA	with	an	id	
that	starts	with	the	letters	“OrderName”.		

DeleteBuyOrders(“*OrderName”)	–	would	delete	all	orders	from	this	SEA	with	an	id	
that	ends	with	the	letters	“OrderName”.		

DeleteBuyOrders(“OrderName”)	–	would	delete	all	orders	created	by	this	SEA	with	
an	id	that	matches	“OrderName”	exactly.		

In	 case	 of	 the	 usage	 of	 strategic	 orders,	 this	 also	 forces	 a	 deactivation	 of	 the	
corresponding	Force	functionality	

void DeleteSellOrders(string id=NULL)

Sends	 a	 signal	 to	 deletes	 any	 pending	 sell	 orders	 of	 the	 SEA.	 If	 id	 is	 specified,	 the	
command	will	 only	 affect	 such	 orders	which	match	 the	 specified	 id	 value.	 	 Hereby	 the	
value	for	id	may	be	used	with	wildcards.		

In	 case	 of	 strategic	 ordering,	 this	 also	 forces	 a	 deactivation	 of	 the	 corresponding	 Stay	
functionality	

void DeleteAllOrders(string id=NULL)

Sends	a	signal	to	deletes	any	pending	orders	of	the	SEA.	If	 id	 is	specified,	the	command	
will	only	affect	such	orders	which	match	the	specified	 id	value.	 	Hereby	the	value	for	 id	
may	be	used	with	wildcards.		

In	case	of	strategic	ordering,	this	also	forces	a	deactivation	of	the	Stay	Side	functionality.	

	

	 33	

4.4	Commands	for	automated	exits	
The	following	functions	are	to	be	used	to	control	 further	automated	exists,	such	as	displayed	at	the	AutoExit	
panel.	Please	refer	to	the	description	of	auto	exiting	to	learn	about	the	functionality	of	all	its	parameters.	

void AEPoolSL (double points)

Sets	the	pool	stop	loss	in	points.	

void AEPoolTP (double points)

Sets	the	pool	take	profit	in	points.	

void AEPoolSLActivate (bool flag)

Activates	or	deactivates	the	Pool	stop	loss.	

void AEPoolTPActivate (bool flag)

Activates	or	deactivates	the	Pool	take	profit.	

void AETradeMaxReduction (double amount)

Sets	 the	 Trade	 P/L	 stop	 loss	 as	 amount.	 If	 amount	 is	 negative,	 it´s	 interpreted	 as	
percentage	value	of	the	current	equity.	

void AETradeMaxGrowth (double amount)

Sets	 the	 Trade	 P/L	 take	 profit	 as	 amount.	 If	 amount	 is	 negative,	 it´s	 interpreted	 as	
percentage	value	of	the	current	equity.	

void AETradeMaxReductionActivate (bool flag)

Activates	or	deactivates	the	Trade	P/L	stop	loss.	

void AETradeMaxGrowthActivate (bool flag)

Activates	or	deactivates	the	Trade	P/L	take	profit.	

void AETradeTrailBegin (double amount)

Specifies	the	beginning	of	the	Trade	P/L	trailing	stop	as	amount.	

void AETradeTrailDistance (double amount)

Specifies	the	distance	of	the	Trade	P/L	trailing	stop	as	amount.	

void AETradeTrailActivate (bool flag)

Activates	or	deactivates	trailing	stop	loss	for	Trade	PL	

void AEEquitySL (double amount)

Sets	the	Equity	stop	loss	as	amount.	If	amount	is	negative,	it´s	interpreted	as	percentage	
value	of	the	current	equity.	

void AEEquityTP (double amount)

Sets	 the	 Equity	 take	 profit	 as	 amount.	 If	 amount	 is	 negative,	 it´s	 interpreted	 as	
percentage	value	of	the	current	equity.	

	

	 34	

void AEEquitySLActivate (bool flag)

Activates	or	deactivates	the	Equity	stop	loss.	

void AEEquityTPActivate (bool flag)

Activates	or	deactivates	the	Equity	take	profit.	

void AEEquityDeactivate (bool flag)

Enables	 or	 disables	 the	 automated	deactivation	of	 any	 automated	processes	when	 the	
Equity	SL	or	Equity	TP	was	triggered.		

void AETimeBegin (int hh, int mm)

Sets	the	begin	time.		

void AETimeFlat (int hh, int mm)

Sets	the	flat	time.		

void AETimeFlatActivate (bool flag)

Enables	or	disables	the	time	based	exit.	

void AERemoveOrdersFlat (bool flag)

Activates	 or	 deactivates	 the	 automated	 deletion	 of	 remaining	 orders	 whenever	 all	
positions	are	closed.		

4.5	Commands	for	strategic	orders	
The	following	functions	are	for	modification	of	the	settings	for	strategic	orders	as	shown	at	the	Strategic	Order	
panel.	Please	refer	to	the	description	of	strategic	orders	to	understand	the	functionality	of	all	its	parameters.	

void SOrderATRMode (string mode)

Defines	the	ATR	mode	as	displayed	in	the	drop	down	list.	

void SOrderDistance (double points)

Defines	 the	distance	between	particular	orders	as	points.	 If	ATR	 is	used,	 the	parameter	
points	becomes	a	multiplier	for	the	calculated	ATR	(average	true	range).	

void SOrderSLRel (double points)

Defines	 the	 relative	 distance	 for	 stop	 loss,	 based	 on	 the	 absolute	 distance	 between	
orders.	

void SOrderTrailBeginRel (double points)

Defines	the	relative	distance	for	the	trail	begin,	based	on	the	absolute	distance	between	
orders.	

void SOrderTrailDistanceRel (double points)

Defines	the	relative	distance	for	trailing,	based	on	the	absolute	distance	between	orders.	

	

	 35	

void SOrderProgressLimit (double factor)

Sets	the	factor	of	order	size	progression	of	limit	orders.	

void SOrderProgressStop (double factor)

Sets	the	factor	of	order	size	progression	of	stop	orders.	

void SOrderSizeMultiplyBuy(double size)

Sets	the	initial	lot	size	of	the	first	buy	order	or	position.		

void SOrderSizeMultiplySell (double size)

Sets	the	initial	lot	size	of	the	first	sell	order	or	position.		

void SOrderAttributes (bool attr_oco, bool attr_co, bool attr_rev, bool attr_net)

Activates	or	deactivates	the	attributes.	

void SOrderInitial (string enumvalue, double distance=1)

Defines	the	type	of	the	initial	order.	 In	case	of	“MTO”	or	“EOP”,	the	parameter	distance	
holds	the	trailing	distance	for	the	order.	

void SOrderChainLimits(bool flag)

Activates/deactivates	chaining	of	MIT	limit	pullback	orders	

void SOrderQuantity (int cntlimits, int cntstops)

Defines	the	count	of	orders	which	are	to	be	generated.	

void SOrderLong ()

Sends	 a	 signal	 to	 execute	 a	 long	 order	 strategy	 which	 equates	 a	 manual	 click	 on	 the	
button.		

void SOrderSide()

Sends	 a	 signal	 to	 execute	 a	 side	 order	 strategy	 which	 equates	 a	 manual	 click	 on	 the	
button.		

void SOrderShort()

Sends	 a	 signal	 to	 execute	 a	 short	 order	 strategy	which	 equates	 a	manual	 click	 on	 the	
button.		

void SOrderStayLong(bool flag)

Activates/deactivates	the	stay-functionality	for	long	strategy	orders.	

void SOrderStayShort(bool flag)

Activates/deactivates	the	stay-functionality	for	side	strategy	orders.	

void SOrderStayShort(bool flag)

Activates/deactivates	the	stay-functionality	for	short	strategy	orders.	

	

	 36	

4.7	Messages		

void MessageFloat (string text, string title=NULL)

Displays	a	floating	message	on	the	chart	in	a	semi-transparent	overlay	window	

void MessageOK (string text, string title=NULL)

Displays	a	message	in	a	window	which	the	user	needs	to	confirm	

void MessageChart (string text, string title=NULL)

Displays	a	scrolling	message	in	the	upper	left	corner	of	the	chart	

void _Print (string text, string text2, ...);

Prints	a	formatted	message	in	the	MetaTrader	Terminal.	

4.8	Other	functions		

double PriceToPoints (double pricevalue)

Converts	a	price	based	value	to	a	point	based	value	in	accordance	to	the	local	definition	
of	a	point.	

double PointsToPrice (double pointvalue)

Converts	a	point	based	value	to	a	price	based	value	in	accordance	to	the	local	definition	
of	a	point.	

bool IsTradingHours(void)

Returns	true	when	the	currently	processed	bar/tick	is	in	the	time	range	which	is	specified	
at	the	profile	definition	of	the	underlying	symbol.		

bool IsProfileDataPresent(void)

Returns	true	when	profile	data	is	specified	for	the	symbol	

bool IsTimeAllowed(void)

Returns	true	when	the	currently	processed	bar/tick	is	in	the	time	range	which	is	specified	
at	Auto-Exit-Panel	of	StereoTrader	

bool IsInTimeWindow(void)

Returns	true	when	the	currenlty	processed	bar/tick	is	in	the	time	range	which	is	specified	
by	SetTimeWindow()	function	

4.9	Options	
void OptionMITLimitOrders (bool flag)

	

	 37	

Enables/disables	the	MIT	functionality	for	limit	orders.	

void OptionMITStopOrders (bool flag)

Enables/disables	the	MIT	functionality	for	stop	orders.	

void OptionMITSLTP (bool flag)

Enables/disables	the	MIT	functionality	for	stop	loss	and	take	profit.	

void OptionMITSLSoft (int smaperiods)

Defines	the	periods	which	is	used	to	calculate	the	moving	average	for	soft	SL.	This	option	
takes	 only	 effect	 if	OptionMITSLTP(true)	 was	 executed	 before	 or	 if	 the	 corresponding	
option	was	enabled	at	 the	Setup.	 In	case	of	 smaperiods=0	 the	SL	works	as	a	normal	SL	
and	 is	 triggered	 as	 soon	 the	 level	 was	 reached,	 otherwise	 a	 simple	moving	 average	 is	
used	to	calculate	the	trigger	level,	which	softens	the	stop	loss	on	high	volatility.	

void OptionSLTPAdjust (bool flag)

If	activated,	this	results	in	adjustment	of	stop	loss	and/or	take	profit	after	a	further	order	
was	 filled,	 based	 on	 the	 specified	 amount	 of	 points	 for	 SL	 and/or	 TP.	 If	 this	 option	 is	
disabled,	the	position	of	stop	loss	and/or	take	profit	stays	fixed	at	the	distance	to	the	first	
filled	order	in	the	pool.	(This	option	takes	effect	only	in	virtual	modes)	

void OptionOrderRoom (double roompoints)

Predefines	 a	 minimal	 room	 between	 orders	 to	 prevent	 overlapping	 orders.	 The	
parameter	 roompoints	 defines	 the	 space	 around	 any	 new	order	which	 shall	 be	 verified	
first.	If	roompoints	is	set	to	10,	StereoTrader	would	not	create	an	order	if	there	is	already	
another	order	or	position	of	the	same	direction	within	in	a	distance	of	10	points.		

4.9	API	variables	
StereoTrader	provides	several	 trade	variables	which	are	updated	on	every	 tick.	These	variables	are	called	API	
variables.		

Due	to	the	circumstance,	that	SEAs	work	in	a	message	queue,	the	provided	variables	are	valid	for	the	duration	
of	one	tick.	This	means,	e.	g.,	if	a	CloseAll()	is	executed	or	any	other	trade	command	such	as	Buy(),	the	number	
of	opened	positions,	returned	by	GetCntPos()	remains	unchanged	until	the	next	tick	forces	the	next	execution	
of	 SEA_EVALUATE.	 Clear,	 because	 StereoTrader	 gets	 informed	 about	 CloseAll()	 when	 the	 code	 exits	 the	
SEA_EVALUATE	block.	

4.9.1	Common	

The	 following	 functions	 return	 the	 values	 of	 global	API	 variables,	which	 are	 common	 for	 all	 SEAs.	Use	 these		
functions	instead	of	the	corresponding	MetaTrader4	functions	to	ensure,	that	you	get	correct	results.	

datetime GetServerTime()

Returns	the	server	time.		

double GetEquity()

Returns	the	current	equity	as	double.	

double GetBalance()

Returns	the	current	account	balance	as	double.	

	

	 38	

double GetSpread ()

Returns	the	current	absolute	spread	

4.9.2	Trading	data	

	

double GetOrderSize()

Size	of	new	order	as	set	in	the	order	panels.	

double GetPL()

Returns	the	current	Pool	P/L	as	currency	amount.	

double GetPLBuy()

Returns	the	current	P/L	of	all	buy	positions	as	currency	amount.	

double GetPLSell()

Returns	the	current	P/L	of	all	sell	positions	as	currency	amount.	

double GetPLPoints()

Returns	the	current	Pool	P/L	as	point	value.	

double GetPLBuyPoints()

Returns	the	current	P/L	of	all	buy	positions	as	point	value.	

double GetPLSellPoints()

Returns	the	current	P/L	of	all	sell	positions	as	point	value.	

double GetPLTrade()

Returns	the	current	Trade	P/L	as	currency	amount.	

double GetBE()

Returns	the	accumulated	break	even	of	all	positions	in	the	pool	as	price	value.	

double GetBEBuy()

Returns	the	break	even	/	average	price	of	all	buy	positions	in	the	pool	as	price	value.	

double GetBESell()

Returns	the	break	even	/	average	price	of	all	positions	in	the	pool	as	price	value.	

int GetCntPos()

Returns	the	accumulated	number	of	all	opened	positions	within	the	pool.	Accumulation	
means	in	this	case,	if	the	pool	contains	10	sell	positions	and	12	buy	positions,	the	function	
would	return	+2.		

	

	 39	

int GetCntPosBuy()

Returns	the	number	of	all	opened	buy	positions	within	the	pool.	

int GetCntPosSell()

Returns	the	number	of	all	opened	sell	positions	within	the	pool.	

int GetCntOrders()

Returns	 the	 accumulated	number	of	 all	 orders	within	 the	pool.	Accumulation	means	 in	
this	case,	if	the	pool	contains	10	sell	orders	and	12	buy	orders,	the	function	would	return	
+2.		

int GetCntOrdersBuy()

Returns	the	number	of	all	buy	orders	within	the	pool.	

int GetCntOrdersSell()

Returns	the	number	of	all	sell	orders	within	the	pool.	

double GetSize()

Returns	 the	 accumulated	 size	 of	 all	 opened	 positions	 within	 the	 pool.	 Accumulation	
means	in	this	case,	if	the	pool	contains	10	lots	on	the	sell	side	and	12	on	the	buy	side,	the	
function	would	return	+2.	

double GetSizeBuy()

Returns	the	summarized	size	of	all	opened	buy	positions	within	the	pool.	

double GetSizeSell()

Returns	the	summarized	size	of	all	opened	sell	positions	within	the	pool.	

If	 local	 is	set	to	true,	the	function	returns	only	the	number	of	positions	which	belong	to	
this	client.	

4.10	Status	requests	
The	following	functions	are	provided	as	soon	as	the	SEA	client	was	registered.	Same	as	with	 initialization,	the	
usage	of	these	functions	is	optional.	

bool IsRegistered()

Returns	the	registration	state	of	the	client.	

ENUM_TRADE_MODE TradeMode()

In	case	 if	an	SEA	supports	multiple	modes,	this	function	 is	used	to	 identify	the	mode,	 in	
which	StereoTrader	is	operating.	The	value	is	one	of	the	following:	

 TRADE_MODE_SINGLE_HEDGE = 1
 TRADE_MODE_SINGLE_NOHEDGE = 2
 TRADE_MODE_STEREO_HEDGE = 4
 TRADE_MODE_STEREO_FUTURE = 8

bool IsHedging()

	

	 40	

Returns	true	if	the	current	mode	is	capable	of	hedging.	

bool IsAcknowledged ()

Checks	if	the	SEA	was	acknowledged	by	the	host.	

bool IsHostPresent ()

Checks	if	StereoTrader	is	loaded.	

bool IsLongAllowed ()

Returns	true	if	long	trades	are	allowed	

bool IsShortAllowed ()

Returns	true	if	short	trades	are	allowed	

4.11	Source	code	example	
The	 following	 shows	 the	 full	 source	 code	 in	 which	 the	 functionality	 of	 two	 crossing	 moving	 averages	 is	
implemented.		

//+--+
//| CrossingMA_01.mq4 |
//| Copyright 2017 by Dirk Hilger |
//| https://www.mql5.com |
//+--+
#property copyright "Copyright 2017, Dirk Hilger"
#property link "https://www.stereotrader.net"
#property version "1.00"
#property strict

/*

 DESCRIPTION:

 CrossingMA buys or sells when one moving average crosses another.
 It can furhtermore test the curve of such if its sloping up or down.

 The example also shows the usage of an input panel.

*/

//+--+
//| Includes |
//+--+
#include <StereoTrader_API\StereoAPI.mqh>

//--- Remove these lines if indicator shall not appear in a separate window
#property indicator_separate_window
#property indicator_height 48

//+--+
//| Declaration of StereoEA |
//+--+
DECLARE_SEA_BEGIN("CrossingMA01")
//+--+
//| Fields |
//+--+
CSNumEdit ma_fast; // Fast MA
CSNumEdit ma_slow; // Slow MA
CSButton ma_checkcurve; // Check curve direction

//+--+

	

	 41	

//| Optional initialization function |
//+--+
SEA_INIT
 {
 //--- Add input fields
 _Panel.AddNumEdit(ma_fast,"Fast MA",20);
 _Panel.AddNumEdit(ma_slow,"Slow MA",200);
 _Panel.AddButton(ma_checkcurve,"Curve");
 //--- Return success
 return(true);
 }
//+--+
//| Iteration |
//+--+
SEA_EVALUATE
 {

//--- MA levels
 double mafast=_Bars.SMA((int)ma_fast.Value());
 double mafastspan=_Bars.SMA((int)ma_fast.Value(),2);
 double maslow=_Bars.SMA((int)ma_slow.Value());
 double maslowspan=_Bars.SMA((int)ma_slow.Value(),2);

//--- Long signal
 bool buysignal=true;
 //--- Fast MA is above/equal slow MA
 buysignal&=mafast>=maslow;
 //--- Fast MA was below __e_ma_slow MA
 buysignal&=mafastspan<maslowspan;
 //--- Direction check
 if (ma_checkcurve.Pressed())
 {
 buysignal&=mafast>mafastspan;
 buysignal&=maslow>maslowspan;
 }

 if (buysignal)
 {
 Buy();
 return;
 }

//--- Short signal ?
 bool shortsignal=true;
 //--- Fast MA is below/equal __e_ma_slow MA
 shortsignal&=mafast<=maslow;
 //--- Fast MA was above __e_ma_slow MA
 shortsignal&=mafastspan>maslowspan;
 //--- Direction check
 if (ma_checkcurve.Pressed())
 {
 shortsignal&=maslow<maslowspan;
 shortsignal&=mafast<mafastspan;
 }

 if (shortsignal)
 {
 Sell();
 return;
 }

//--- No signal
 return;

 }

//+--+
//| Declaration of StereoEA |
//+--+
DECLARE_SEA_END

	

	 42	

5.	Drawing	
StereoTrader	allows	for	easy	drawing	of	clusters,	highlight	zones,	arrows	and	lines.	The	drawing	functions	may	
be	used	within	SEA_INDICATE	as	well	as	within	SEA_EVALUATE	

This	 chapter	 is	 not	 implemented	 yet	 entirely,	 please	 refer	 to	 the	 samples	 such	 as	 RangeBreakOut	 or	
DstFromTime.	The	functions	are:	

5.1	Drawing	lines	
Any	function	which	draws	a	line	returns	an	integer	value.	This	value	represents	the	id	of	such	an	object	which	is	
used	for	any	futher	operation	with	this	object.		

	

int DrawLine(string text, double pricebegin, color clr, datetime timebegin=0,
datetime timeend=0, int width=1, ENUM_LINE_STYLE style=STYLE_SOLID, string
tooltip=NULL)

int DrawLineFibo(string text, double low, double high, double fibomult,datetime
timebegin, datetime timeend, color clr, int width=1,ENUM_LINE_STYLE
style=STYLE_SOLID,string tooltip=NULL)

int DrawLinePivot(string text, double low, double high, double close,
ENUM_PIVOT_POINT p, datetime timebegin, color clr, datetime
timeend=TIME_INFINITE, int width=1, ENUM_LINE_STYLE style=STYLE_SOLID, string
tooltip=NULL)

int DrawLineTrend (string text, datetime, datetime timebegin, double pricebegin,
datetime timeend, double priceend, color clr, int width=1,ENUM_LINE_STYLE
style=STYLE_SOLID,string tooltip=NULL)

bool UpdateLine(int id, string text, datetime timebegin, double pricebegin,
datetime timeend, double priceend, color clr, int width=1,ENUM_LINE_STYLE
style=STYLE_SOLID,string tooltip=NULL)

int DrawLineV(datetime time, color clr, int width=1, ENUM_LINE_STYLE
style=STYLE_SOLID, string tooltip=NULL)

bool MoveLine(int id, double price, string text=NULL, string tooltip=NULL,
datetime timebegin=-1)

bool MoveLine(int id, double pricebegin, double priceend, datetime timebegin,
datetime timeend, string text=NULL, string tooltip=NULL);

bool DeleteLine(int id)

5.2	Drawing	rectangles	
Any	function	which	draws	a	rectangle	returns	an	 integer	value.	This	value	represents	the	 id	of	such	an	object	
which	is	used	for	any	futher	operation	with	this	object.		

int DrawRectangle(datetime timebegin, double pricebegin, datetime timeend,
double priceend,color clr,string text=NULL,string tooltip=NULL);

bool UpdateRectangle (int id, datetime timebegin, double pricebegin, datetime
timeend, double priceend,color clr,string text=NULL,string tooltip=NULL);

bool DeleteRectangle(int id=-1)

	

	

	 43	

5.3	Drawing	clusters	
Any	function	which	draws	a	cluster	returns	an	integer	value.	This	value	represents	the	id	of	such	an	object	which	
is	used	for	any	futher	operation	with	this	object.					

bool DrawClusterLong(string text, datetime timebegin, double pricebegin, datetime
timeend, double priceend, string tooltip=NULL) ;

bool DrawClusterShort(string text, datetime timebegin, double pricebegin,
datetime timeend, double priceend, string tooltip=NULL) ;

bool DrawCluster(string text, datetime timebegin, double pricebegin, datetime
timeend, double priceend, color clr_cluster, color clrtext, string tooltip=NULL)

bool UpdateCluster(int id, string text, datetime timebegin, double pricebegin,
datetime timeend, double priceend, color clr_cluster, color clrtext, string
tooltip=NULL);

void SetDrawClusterType(bool fillcluster, int linethickness);

bool DeleteCluster(int id);

5.4	Drawing	arrows	
Any	 function	which	 draws	 an	 arrow	 returns	 an	 integer	 value.	 This	 value	 represents	 the	 id	 of	 such	 an	 object	
which	is	used	for	any	futher	operation	with	this	object.					

int DrawArrowLong(double price, string text=NULL, int size=2, int shift=0) ;

int DrawArrowShort(double price, string text=NULL, int size=2, int shift=0) ;

int DrawArrowLong(string text=NULL, int size=2,int shift=0);

int DrawArrowShort(string text=NULL, int size=2,int shift=0);

int DrawArrowLong(double price, double time, int size=2, string tooltip=NULL,
ENUM_ARROW_ANCHOR anchor=WRONG_VALUE);

int DrawArrowShort(double price, double time, int size=2, string tooltip=NULL,
ENUM_ARROW_ANCHOR anchor=WRONG_VALUE);

bool DeleteArrow(int id);

5.5	Drawing	highlight	zones	
Any	 function	which	 draws	 a	 highlight	 zone	 returns	 an	 integer	 value.	 This	 value	 represents	 the	 id	 of	 such	 an	
object	which	is	used	for	any	futher	operation	with	this	object.					

int DrawHighlightLong(int shift=0, int minutes=-1);

int DrawHighlightShort(int shift=0, int minutes=-1);

int DrawHighlightLong(datetime timebegin, int minutes=-1);

int DrawHighlightShort(datetime timebegin, int minutes=-1);

int DrawHighlight(color clr=clrNONE, int shift=0, int minutes=-1);

int DrawHighlight(datetime timebegin, color clr=clrNONE, int minutes=-1);

bool MoveHighlight(int id, datetime newtime);

bool ShiftHighlight(int id, int bars=1);

bool ToolTipHighlight(int id, string text);

	

	 44	

5.6	Drawing	filters	
bool DrawFilterLong(int shift=0)

bool DrawFilterShort(int shift=0)

bool DrawFilterNone(int shift=0)

bool DrawFilter(int filter, datetime timebegin=0, datetime timeend=0, int
shift=0) ;

5.7	Drawing	trace	lines	
bool DrawTraceLineInit(int id=-1, color clr=clrBlue, int width=1, ENUM_LINE_STYLE
style=STYLE_SOLID, string tooltip=NULL)

bool DrawTraceLineBegin(int id, double price, color clr=clrNONE, int shift=0)

bool DrawTraceLineBegin(int id, double price, datetime timebegin, color
clr=clrNONE)

bool DrawTraceLineUpdate(int id, double price, color clr=clrNONE, int shift=0)

bool DrawTraceLineUpdate(int id, double price, datetime time, color clr=clrNONE)

5.8	Drawing	text	
Any	function	which	draws	text	returns	an	integer	value.	This	value	represents	the	id	of	such	an	object	which	is	
used	for	any	futher	operation	with	this	object.					

int DrawTextBox(string text,datetime dt, double price);

int DrawTextBox(string text, int shift=0);

bool DeleteTextBox(int id);

5.9	Drawing	candles	
Any	function	which	draws	a	candle	returns	an	integer	value.	This	value	represents	the	id	of	such	an	object	which	
is	used	for	any	futher	operation	with	this	object.					

int DrawCandle(CBar &bar, datetime time, datetime timeend);

int DrawCandle(CBar *bar, datetime time, datetime timeend);

bool UpdateCandle(int id, CBar &bar);

bool UpdateCandle(int id, CBar *bar);

bool DeleteCandle(int id);

	

	 45	

6.	Dialog	fields	
StereoTrader	 allows	 for	 easy	 implementing	 of	 dialog	 fields	 which	 are	 located	 on	 a	 panel.	 The	 object	 which	
allows	access	to	all	such	fields	is	defined	as	_Panel.	

(This	chapter	is	not	implemented	yet.)	

	

//+--+
//| VolumeBreakout.mq4 |
//| Copyright 2016, Dirk Hilger |
//| https://www.stereotrader.net |
//+--+
#property copyright "Copyright 2015, Dirk Hilger"
#property link "https://www.stereotrader.net"
#property version "1.00"
#property strict

//+----------------------------- -------------------------------------+
//| Indicator properties |
//+--+
#property indicator_separate_window
#property indicator_height 48
//+--+
//| Includes |
//+--+
#include <StereoTrader_API\StereoAPI.mqh>
//+--+
//| StereoEA declaration |
//+--+
DECLARE_SEA_BEGIN("VolBreakOut")
//+--+
//| Objects |
//+--+
CSButton m_mode; //--- Intrabar / prev bar
CSNumEdit m_lookback; //--- Edit field shift
CSNumEdit m_mult; //--- Edit field span
CSNumEdit m_minpips; //--- Edit field Slow MA

//+--+
//| Initialization function |
//+--+
SEA_INIT
 {
 //--- Settings

 // We start operating on the previous bar
 SetDefaultShift(1);
 //--- Allow multiple trades signals same direction
 SetSignalOverlap(false);
 //--- Close opposite in case of countersignal
 SetSignalOpposite(SEA_OPPOSITE_CLOSE);

//--- Add panel title
 _Panel.AddTitle(m_name);
//--- Add edit fields
 _Panel.AddButton(m_mode,"Mode","Close","Tick",false);
 _Panel.AddNumEdit(m_lookback,"Vol Span",14);
 _Panel.AddNumEdit(m_mult,"Vol Th",2.0,1);
 _Panel.AddNumEdit(m_minpips,"Body pips",10);

//---
 return(true);
 }
//+--+
//| Check signal |
//+--+
SEA_EVALUATE
 {
 static long averagevolume=0;
 static int span=0;

	

	 46	

 static double mult=0;
 static double minbarrange=0;

 //--- Calculate on new bar and fetch fields on new bar (saves time)
 if (IsNewBar())
 {
 //--- Fields
 span=MAX(1,(int)m_lookback.Value());
 mult=mult=m_mult.Value();
 minbarrange = PointsToPrice(m_minpips.Value());

 if (m_mode.Pressed())
 {
 SetEveryTick(true);
 averagevolume=_Bars.TickVolumeAverage(span,1);
 }
 else
 {
 SetEveryTick(false);
 averagevolume=_Bars.TickVolumeAverage(span);
 }

 //--- Average volume
 }

 //--- Checks
 if (averagevolume==0)
 {
 Print("No volume info present! Bar: ",_Index);
 return;
 }

 if (_Bars.BodyRange()<minbarrange)
 return;

 //--- Check volume
 long volThis=_Bars.TickVolume();
 if (volThis>=(averagevolume*mult))
 {
 if (_Bars.IsBullish())
 Buy();
 else
 Sell();
 }
 }

DECLARE_SEA_END

	

	 47	

7.	Notes	for	advanced	developers	

7.1	Class	frame	
Any	 code	 between	 DECLARE_SEA_BEGIN	 and	 DECLARE_SEA_END	 is	 part	 of	 a	 class	 which	 derives	 from	 the	 base	 classes	
CStereoEA	and	CStereoEAEvents,	 the	macros	define	the	frame	to	embed	any	function	 into	the	class	CSEADev.	 In	case	 if	you	
used	earlier	versions	of	the	API,	the	code	is	still	compatible.	The	name	of	the	public	CStereoEAEvents	class	object	is	__SEA.	

• SEA_INIT	is	replaced	by	virtual	bool	OnInit()	

• SEA_EVALUATE	is	a	macro	which	is	replaced	by	virtual	void	OnEvaluate()	

• SEA_INDICATE	is	a	macro	which	is	replaced	by	virtual	void	OnIndicate()	

• SEA_DEINIT	is	replaced	by	virtual	void	OnDeinit(const	int	reason)	

• SEA_CHARTEVENT	by	virtual	void	OnChartEvent(…)	

• SEA_CALCULATE	by	virtual	void	OnCalculate(…).		

Instead	of	using	these	macros,	you	may	feel	free	to	use	the	normal	function	names.	

	

	 48	

8.	Further	classes	&	functions	of	the	API	
The	 functions	 described	 before	 are	 local	 functions	 of	 the	 SEA	 framework,	 inside	 the	 class	 CSEADev,	 defined	 by	
DECLARE_SEA_BEGIN	and	DECLARE_SEA_END.	The	API	contains	much	more	functions	and	classes	which	may	be	used	by	an	
SEA.		

8.1	Compatibility	MT4/MT5	
It´s	highly	recommended	to	NOT	use	native	MetaTrader	functions,	rather	you	should	use	only	the	functions	of	the	API	files	
instead.	 The	 reason	 is	 the	 compatibility	 between	different	builds	of	MetaTrader	 as	well	 as	 compatiblity	between	MT4	and	
MT5.	When	using	these	functions,	you	are	always	100%	compatible.	If	you	take	a	look	at	the	forums	of	MetaQuotes,	you	will	
find	 hundreds	 of	 desperate	 users	 who	 worry	 about	 porting	 from	 MT4	 to	 MT5.	 If	 you	 decide	 to	 develop	 with	 the	
framework/API	of	StereoTrader,	you	don´t	have	to	worry	about	it	all	–	you	are	always	compatible	without	any	change.		

8.2	File	__MT_native.mqh	
This	file	contains	public	functions	for	the	most	common	reasons.	The	functions	replace	many	native	MT	language	commands,	
it	also	contains	useful	macros.	Almost	every	function	name	begins	with	the	prefix	“__MT_”.	Please	feel	also	free	to	take	a	look	
at	the	file		and	to	find	additional	functions	for	your	purposes.		

The	file	also	contains	several	public	objects.	These	are	

	

• __Terminal		by	CMTTerminal	class	–	properties	and	functions	regarding	the	environment	

• __Account	by	CMTAccount	class	–	properties	and	functions	regarding	the	account	and	broker	

• __Time	by	CTimeNative	class	–	access	to	time	functions		

	

8.3	File	__ChartExt.mqh	
This	file	contains	the	class	CChartExt	as	well	as	a	public	object	named	

__Chart	

The	object	allows	for	quick	access	and	enhanced	functionality	of/with	the	chart.	

	

8.4	File	XVars.mqh	
This	file	contains	class	which	allow	for	extended	variable	sharing	between	different	charts	and	instances	of	MT4	and	MT5.		It	
replaces	and	enhances	the	functionality	of	global	variables,	which	you	may	know	from	MQL.	Besides	the	class	CXVars	there	
are	several	predefined	public	objects:	

• __ChartVars		–	allows	for	sharing	variables	inside	one	chart	and	may	be	accessed	by	multiple	SEAs	

• __LocalVars		–	allows	for	sharing	variables	inside	the	MT4	or	MT5	environment	and	between	different	charts	

• __GlobalVars		–	variable	sharing	between	multiple	instances	of	either	MT4	or	MT5	

• __GlobalMTXVars		–	variable	sharing	between	all	instances	of	MetaTrader	

	

These	objects	can	be	accessed	without	any	initialization	or	deinitialization.			

The	most	important	functions	are:	

	

	

	 49	

bool SetDouble(string name, double value, bool permanent=false)

Stores	 a	 double	 value	 by	 a	 given	 name.	 If	 permanent	 is	 set	 to	 true,	 the	 variable	 will	
overdue	the	runtime	of	an	SEA.	

bool SetString(string name, string value, bool permanent=false)

Stores	 a	 string	 value	 by	 a	 given	 name.	 If	 permanent	 is	 set	 to	 true,	 the	 variable	 will	
overdue	the	runtime	of	an	SEA.	

double GetDouble(string name)

Reads	a	double	value	by	a	given	name.		

string GetString(string name)

Reads	a	string	value	by	a	given	name.		

bool IsDefined(string name)

Returns	true	if	the	variable	is	defined	

bool Delete(string name)

Reads	a	string	value	by	a	given	name.		

If	you	want	to	use	the	class	for	furhter	purposes,	these	functions	allow	to	create	own	variable	databases:	

	

bool InitByChart(string prefix=NULL, CHART id=NULL, bool commonfolder=false)

Creates	or	opens	a	database	by	using	the	current	chart.		

bool Init(string filename, bool commonfolder=false)

Creates	or	opens	an	individual	database.		

8.5	File	Comment.mqh	
You	may	know	the	MQL	command	“Comment”.	The	CComment	class	enhances	the	functionality	of	printing	text	in	the	upper	
left	corner	of	the	chart.	Comments	may	displayed	in	separate	blocks,	whereby	each	inheritant/instance	defines	a	block.	You	
may	define	your	own	instance	or	you	may	use	the	predefined	public	object	__Comment	.		

Please	 note	 that	 SEAs	 should	 not	 use	 the	 class	 object,	 rather	 you	 should	 use	 the	 function	MessageChart().	 	 This	way	 you	
ensure	that	StereoTrader	handles	the	output	and	manages	it	with	outputs	of	other	SEAs.			

void Append(string value)

Adds	a	text	to	the	comment	block	

void Clear()

Deletes	all	comments		

	

	 50	

Copyright	/	Impressum	
StereoTrader	is	developed	under	german	copyright	protection	by		

Dirk	Hilger	
Gottesweg	64	

50969	Cologne	
Germany	

info@stereotrader.net		
www.stereotrader.net		
	

	

All	rights	are	reserved.		Usage	of	StereoTrader	is	always	on	your	own	risk.		

	

	

	 51	

	

Get	ready	for	success.	

